If A and B are invertible matrices, then which one of the following is not correct?
(a) $\operatorname{adj} A=|A| A^{-1}$
(b) $\operatorname{det}\left(A^{-1}\right)=[\operatorname{det}(A)]^{-1}$
(c) $(A B)^{-1}=B^{-1} A^{-1}$
(d) $(A+B)^{-1}=B^{-1}+A^{-1}$
(a) adj $A=|A| A^{-1}$
As we know,
$A^{-1}=\frac{\operatorname{adj} A}{|A|}$
$\Rightarrow A^{-1}|A|=\operatorname{adi} A$
Thus, $\operatorname{adj} A=|A| A^{-1}$ is correct.
(b) $\operatorname{det}\left(A^{-1}\right)=[\operatorname{det}(A)]^{-1}$
As we know,
$\left|A^{-1}\right|=\frac{1}{|A|}$
$\Rightarrow\left|A^{-1}\right|=|A|^{-1}$
Thus, $\operatorname{det}\left(A^{-1}\right)=[\operatorname{det}(A)]^{-1}$ is correct.
(c) $(A B)^{-1}=B^{-1} A^{-1}$
As we know,
By reversal law of inverse
$(A B)^{-1}=B^{-1} A^{-1}$
Thus, $(A B)^{-1}=B^{-1} A^{-1}$ is correct.
(d) $(A+B)^{-1}=B^{-1}+A^{-1}$
$(A+B)^{-1}=\frac{1}{|A+B|} \operatorname{adj}(A+B)$
$\neq \frac{1}{|A|} \operatorname{adj}(A)+\frac{1}{|B|} \operatorname{adj}(B)$
$\neq \mathrm{A}^{-1}+\mathrm{B}^{-1}$
Thus, $(A+B)^{-1}=B^{-1}+A^{-1}$ is incorrect.
Hence, the correct option is (d).