If A and B are any two events such that

Question:

If $A$ and $B$ are any two events such that $P(A)+P(B)-P(A$ and $B)=P(A)$, then

(A) $P(B \mid A)=1$

(B) $P(A \mid B)=1$

(C) $P(B \mid A)=0$

(D) $P(A \mid B)=0$

Solution:

$P(A)+P(B)-P(A$ and $B)=P(A)$

$\Rightarrow \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A})$

$\Rightarrow \mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0$

$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{B})$

$\therefore P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(B)}{P(B)}=1$

Thus, the correct answer is B.

Leave a comment