If ∠A and ∠B are acute angles such that tanA = tanB,

Question:

If $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are acute angles such that $\tan \mathrm{A}=\tan \mathrm{B}$, the prove that $\angle \mathrm{A}=\angle \mathrm{B}$.

 

Solution:

In $\triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}$,

$\tan \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AC}}$ and

$\tan \mathrm{B}=\frac{\mathrm{AC}}{\mathrm{BC}}$

As, $\tan \mathrm{A}=\tan \mathrm{B}$

$\Rightarrow \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\mathrm{AC}}{\mathrm{BC}}$

$\Rightarrow \mathrm{BC}^{2}=\mathrm{AC}^{2}$

$\Rightarrow \mathrm{BC}=\mathrm{AC}$

So, $\angle \mathrm{A}=\angle \mathrm{B} \quad$ (Angles opposite to equal sides are equal)

 

Leave a comment