If $\mathrm{A}$ and $\mathrm{B}$ are acute angles such that $\tan A=\frac{1}{2}, \tan B=\frac{1}{3}$ and $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$, find $A+B$.
Given:
$\tan A=\frac{1}{2}$...(1)
$\tan B=\frac{1}{3}$....(2)
$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \ldots \ldots$(3)
Now by substituting the value of $\tan A$ and $\tan B$ from equation (1) and (2) in equation (3)
We get,
$\tan (A+B)=\frac{\left(\frac{1}{2}\right)+\left(\frac{1}{3}\right)}{1-\left(\frac{1}{2}\right) \times\left(\frac{1}{3}\right)}$
$=\frac{\left(\frac{1}{2}\right)+\left(\frac{1}{3}\right)}{1-\left(\frac{1}{2 \times 3}\right)}$
$=\frac{\left(\frac{1}{2}\right)+\left(\frac{1}{3}\right)}{1-\left(\frac{1}{6}\right)}$
$=\frac{\frac{5}{6}}{\frac{5}{6}}$
$=\frac{5}{6} \times \frac{6}{5}$
$=1$
Therefore,
$\tan (A+B)=1$...(3)
Now we know that
$\tan 45^{\circ}=1 \ldots \ldots(4)$
Now by comparing equation (3) and (4)
We get,
$A+B=45^{\circ}$