Question:
If A and B are acute angles such that sin A = cos B then (A + B) = ?
(a) 30°
(b) 45°
(c) 60°
(d) 90°
Solution:
Given: sinA = cosB
$\sin A=\cos B$
$\Rightarrow \cos \left(90^{\circ}-A\right)=\cos B \quad\left(\because \sin \theta=\cos \left(90^{\circ}-\theta\right)\right)$
$\Rightarrow 90^{\circ}-A=B$
$\Rightarrow 90^{\circ}=B+A$
$\Rightarrow A+B=90^{\circ}$
Hence, the correct option is $(\mathrm{d})$.