If A = and A-1 = A’, find value of a.
$\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$
$A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$ and $A^{\prime}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
Also,
$A^{-1}=A^{\prime}$
$A A^{-1}=A A^{\prime}$
$I=A A^{\prime}$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\cos ^{2} \alpha+\sin ^{2} \alpha & 0 \\ 0 & \sin ^{2} \alpha+\cos ^{2} \alpha\end{array}\right]$
By using equality of matrices, we get
cos2 α + sin2 α = 1, which is true for all real values of α.