If A = {a, b, c, d, e}, B = {a, c, e, g}, verify that:
(i) $A \cup B=B \cup A$
(ii) $A \cup C=C \cup A$
(iii) $B \cup C=C \cup B$
(iv) $A \cap B=B \cap A$
(v) $B \cap C=C \cap B$
(vi) $A \cap C=C \cap A$
(vii) $(A \cup B \cup C=A \cup(B \cup C)$
(viii) $(A \cap B) \cap C=A \cap(B \cap C)$
(i) LHS = A ∪ B
$=\{a, b, c, d, e\} \cup\{a, c, e, g\}$
$=\{a, b, c, d, e, g\}$
$=\{a, c, e, g\} \cup\{a, b, c, d, e\}$
$=B \cup A$
$=R H S$
Hence proved.
(ii) To prove: A ∪ C = C ∪ A
Since the element of set C is not provided,
let x be any element of C.
$\mathrm{LHS}=\mathrm{A} \cup \mathrm{C}$
$=\{a, b, c, d, e\} \cup\left\{x \mid x^{\in} C\right\}$
$=\{a, b, c, d, e, x\}$
$=\{x, a, b, c, d, e\}$
$=\left\{x \mid x^{\in} C\right\} \cup\{a, b, c, d, e\}$
$=C \cup A$
= RHS
Hence proved
(iii) To prove: B ∪ C = C ∪ B
Since the element of set C is not provided
let x be any element of C.
LHS = B ∪ C
$=\{a, c, e, g\} \cup\left\{x \mid x^{\in} C\right\}$
$=\{a, c, e, g, x\}$
$=\{x, a, c, e, g\}$
$=\left\{x \mid x^{\epsilon} C\right\} \cup\{a, c, e, g\}$
= C ∪ B
= RHS
Hence proved.
(iv) LHS = A ∩ B
$=\{a, b, c, d, e\} \cup\{a, c, e, g\}$
$=\{a, c, e\}$
RHS = B ∩ A
$=\{a, c, e, g\} \cap\{a, b, c, d, e\}$
$=\{a, c, e\}$
$\therefore \mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
(v) Let x be an element of B ∩ C
$\Rightarrow \mathrm{x}^{\mathrm{E}} \mathrm{B} \cap \mathrm{C}$
$\Rightarrow \mathrm{x}^{\in} \mathrm{B}$ and $\mathrm{x}^{\in} \mathrm{C}$
$\Rightarrow \mathrm{x}^{\in} \mathrm{C}$ and $\mathrm{x}^{\in}{ }_{\mathrm{B}}$ [by definition of intersection]
$\Rightarrow x^{\in} C \cap B$
$\Rightarrow \mathrm{B} \cap \mathrm{C} \subset \mathrm{C} \cap \mathrm{B} \ldots .$ (i)
Now let x be an element of C ∩ B
Then, $x \in C \cap B$
$\Rightarrow \mathrm{x}^{\in} \mathrm{C}$ and $\mathrm{x}^{\in} \mathrm{B}$
$\Rightarrow \mathrm{x}^{\in} \mathrm{B}$ and $\mathrm{x}^{\in} \mathrm{C}$ [by definition of intersection]
$\Rightarrow \mathrm{x}^{\in} \mathrm{B} \cap \mathrm{C}$
$\Rightarrow \mathrm{C} \cap \mathrm{B}^{\subset} \mathrm{B} \cap \mathrm{C} \ldots$ (ii)
From (i) and (ii) we have,
B ∩ C = C ∩ B [ every set is a subset of itself]
Hence proved.
(vi) Let $x$ be an element of $A \cap C$
$\Rightarrow \mathrm{x}^{\in} \mathrm{A} \cap \mathrm{C}$
$\Rightarrow \mathrm{x}^{\in} \mathrm{A}$ and $\mathrm{x}^{\in} \mathrm{C}$
$\Rightarrow \mathrm{x}^{\in} \mathrm{C}$ and $\mathrm{x}^{\in} \mathrm{A}$ [by definition of intersection]
$\Rightarrow \mathrm{x}^{\in} \mathrm{C} \cap \mathrm{A}$
$\Rightarrow \mathrm{A} \cap \mathrm{C}^{\subset} \mathrm{C} \cap \mathrm{A} \ldots .$ (i)
Now let $x$ be an element of $C \cap A$
Then, $x \in C \cap A$
$\Rightarrow \mathrm{x}^{\in} \mathrm{C}$ and $\mathrm{x}^{\in} \mathrm{A}$
$\Rightarrow \mathrm{x}^{\in} \mathrm{A}$ and $\mathrm{x}^{\in} \mathrm{C}$ [by definition of intersection]
$\Rightarrow \mathrm{x}^{\in} \mathrm{A} \cap \mathrm{C}$
$\Rightarrow \mathrm{C} \cap \mathrm{A} \subset \mathrm{A} \cap \mathrm{C} \ldots$ (ii)
From (i) and (ii) we have,
$A \cap C=C \cap A$ [ every set is a subset of itself]
Hence proved.
(vii) Let $x$ be any element of $(A \cup B) \cup C$
$\Rightarrow{ }_{\mathrm{x}} \in_{(\mathrm{A} \cup \mathrm{B}) \text { or } \mathrm{x} \in_{\mathrm{C}}}$
$\Rightarrow{ }_{\mathrm{x}} \in_{\mathrm{A} \text { or } \mathrm{x}} \in_{\mathrm{B} \text { or } \mathrm{x}} \in_{\mathrm{C}}$
$\Rightarrow{ }_{\mathrm{x}} \in_{\mathrm{A} \text { or } \mathrm{x}} \in_{(\mathrm{B} \cup \mathrm{C})}$
$\Rightarrow{ }_{\mathrm{x}} \in_{\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})}$
$\Rightarrow(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}^{\subset} \mathrm{A} \cup(\mathrm{B} \cup \mathrm{C}) \ldots \ldots(\mathrm{i})$
Now, let $\mathrm{x}$ be an element of $\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})$
Then, $x \in A$ or $(B \cup C)$
$\Rightarrow x^{\in} A$ or $x^{E} B$ or $x^{\in} C$
$\Rightarrow x^{\in}(A \cup B)$ or $x^{\in} C$
$\Rightarrow x^{\in}(A \cup B) \cup C$
$\Rightarrow A \cup(B \cup C) \subset(A \cup B) \cup C \ldots \ldots$ (ii)
From $i$ and $i i,(A \cup B) \cup C=A \cup(B \cup C)$
[ every set is a subset of itself]
Hence , proved.
(viii) Let $x$ be any element of $(A \cap B) \cap C$
$\Rightarrow x \in(A \cap B)$ and $x \in C$
$\Rightarrow x^{\in} A$ and $x \in_{B}$ and $x \in C$
$\Rightarrow x_{x} \in_{A}$ and $x^{\in}(B \cap C)$
$\Rightarrow{ }_{x} \in_{A} \cap(B \cap C)$
$\Rightarrow(A \cap B) \cap C^{\subset} A \cap(B \cap C) \ldots . .(\mathrm{i})$
Now, let $x$ be an element of $A \cap(B \cap C)$
Then, $x \in{ }_{A}$ and $(B \cap C)$
$\Rightarrow{ }_{x} \in{ }_{A}$ and $x \in{ }_{B}$ and $x \in_{C}$
$\Rightarrow{ }_{x} \in_{(A \cap B) \text { and } x} \in_{C}$
$\Rightarrow{ }_{x} \in_{(A \cap B) \cap C}$
${\Rightarrow{A} \cap(B \cap C)} \subset_{(A \cap B) \cap C \ldots \ldots(\text { ii })}$
From $\mathrm{i}$ and $\mathrm{ii},(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C}=\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C})$
[every set is a subset of itself]
Hence, proved.