If $A=30^{\circ}$ and $B=60^{\circ}$, verify that
(i) $\sin (A+B)=\sin A \cos B+\cos A \sin B$
(ii) $\cos (A+B)=\cos A \cos B-\sin A \sin B$
(i) Given
$A=30^{\circ}$ and $B=60^{\circ} \ldots \ldots$ (1)
To verify:
$\sin (A+B)=\sin A \cos B+\cos A \sin B$.....(2)
Now consider LHS of the expression to be verified in equation (2)
Therefore,
$\sin (A+B)=\sin (30+60)$
$=\sin 90$
$=1$
Now consider RHS of the expression to be verified in equation (2)
Therefore;
$\sin A \cos B+\cos A \sin B=\sin 30^{\circ} \cos 60^{\circ}+\cos 30^{\circ} \sin 60^{\circ}$
$=\frac{1}{2} \times \frac{1}{2}+\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}$
$=\frac{1+3}{4}$
$=1$
Hence it is verified that,
$\sin (A+B)=\sin A \cos B+\cos A \sin B$
(ii) Given:
$A=30^{\circ}$ and $B=60^{\circ} \ldots \ldots$ (1)
To verify:
$\cos (A+B)=\cos A \cos B-\sin A \sin B$.....(2)
Now consider LHS of the expression to be verified in equation (2)
Therefore,
$\cos (30+60)=\cos 90$
$=0$
Now consider RHS of the expression to be verified in equation (2)
Therefore,
$\cos A \cos B-\sin A \sin B=\cos 30 \cos 60-\sin 30 \sin 60$
$=\frac{\sqrt{3}}{2} \times \frac{1}{2}-\frac{1}{2} \times \frac{\sqrt{3}}{2}$
$=0$
Hence it is verified that,
$\cos (A+B)=\cos A \cos B-\sin A \sin B$