If A(1, 3), B(−1, 2) and C(2, 5) and D(x, 4) are the vertices of a ||gm ABCD then the value of x is

Question:

If A(1, 3), B(−1, 2) and C(2, 5) and D(x, 4) are the vertices of a ||gm ABCD then the value of x is   

(a) 3

(b) 4

(c) 0

(d) $\frac{3}{2}$

 

Solution:

The diagonals of a parallelogram bisect each other. The vertices of the ||gm ABCD are A(1, 3), B(−1, 2) and C(2, 5) and D(x, 4).
Here, AC and BD are the diagonals. So

$\frac{1+2}{2}=\frac{-1+x}{2}$

$\Rightarrow x-1=3$

$\Rightarrow x=1+3=4$

Hence, the correct answer is option (b).

Leave a comment