Question:
If $-1
Solution:
Let $x=-\tan y$
where $0 Then, $\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)+\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\sin ^{-1}\left(\frac{-2 \tan y}{1+\tan ^{2} y}\right)+\cos ^{-1}\left(\frac{1-\tan ^{2} y}{1+\tan ^{2} y}\right)$ $=\sin ^{-1}\{-\sin (2 y)\}+\cos ^{-1}\{\cos (2 y)\}$ $=-\sin ^{-1}\{\sin (2 y)\}+\cos ^{-1}\{\cos (2 y)\}$ $=-2 y+2 y$ $=0$ $\therefore \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)+\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=0$