Question:
If $\cos \left(2 \sin ^{-1} x\right)=\frac{1}{9}$, then the value of $x$ is ______________.
Solution:
Let $\sin ^{-1} x=\theta \Rightarrow \sin \theta=x$.
$\therefore \cos \left(2 \sin ^{-1} x\right)=\frac{1}{9}$
$\Rightarrow \cos 2 \theta=\frac{1}{9}$
$\Rightarrow 1-2 \sin ^{2} \theta=\frac{1}{9}$
$\Rightarrow 2 \sin ^{2} \theta=1-\frac{1}{9}=\frac{8}{9}$
$\Rightarrow \sin ^{2} \theta=\frac{4}{9}$
$\Rightarrow \sin \theta=\pm \frac{2}{3}$
$\Rightarrow x=\pm \frac{2}{3}$ $(\sin \theta=x)$
Thus, the value of $x$ is $\pm \frac{2}{3}$.
If $\cos \left(2 \sin ^{-1} x\right)=\frac{1}{9}$, then the value of $x$ is $\pm \frac{2}{3}$