If $\left(\sin ^{-1} x\right)^{2}+\left(\sin ^{-1} y\right)^{2}+\left(\sin ^{-1} z\right)^{2}=\frac{3}{4} \pi^{2}$, find the value of $x^{2}+y^{2}+z^{2}$
We know that the maximum value of $\sin ^{-1} x, \sin ^{-1} y, \sin ^{-1} z$ is $\frac{\pi}{2}$ and minimum value of $\sin ^{-1} x, \sin ^{-1} y, \sin ^{-1} z$ is $-\frac{\pi}{2}$
Now,
For maximum value
$\mathrm{LHS}=\left(\sin ^{-1} x\right)^{2}+\left(\sin ^{-1} y\right)^{2}+\left(\sin ^{-1} z\right)^{2}$
$=\left(\frac{\pi}{2}\right)^{2}+\left(\frac{\pi}{2}\right)^{2}+\left(\frac{\pi}{2}\right)^{2}$
$=\frac{3}{4} \pi^{2}=\mathrm{RHS}$
and For minimum value
$\mathrm{LHS}=\left(\sin ^{-1} x\right)^{2}+\left(\sin ^{-1} y\right)^{2}+\left(\sin ^{-1} z\right)^{2}$
$=\left(-\frac{\pi}{2}\right)^{2}+\left(-\frac{\pi}{2}\right)^{2}+\left(-\frac{\pi}{2}\right)^{2}$
$=\frac{3}{4} \pi^{2}=$ RHS
Now, For maximum value
$\sin ^{-1} x=\frac{\pi}{2}, \sin ^{-1} y=\frac{\pi}{2}, \sin ^{-1} z=\frac{\pi}{2}$
$\Rightarrow x=\sin \frac{\pi}{2}, y=\sin \frac{\pi}{2}, z=\sin \frac{\pi}{2}$
$\Rightarrow x=1, y=1, z=1$
$\therefore x^{2}+y^{2}+z^{2}=1+1+1=3$
and for minimum value
$\sin ^{-1} x=-\frac{\pi}{2}, \sin ^{-1} y=-\frac{\pi}{2}, \sin ^{-1} z=-\frac{\pi}{2}$
$\Rightarrow x=\sin \left(-\frac{\pi}{2}\right), y=\sin \left(-\frac{\pi}{2}\right), z=\sin \left(-\frac{\pi}{2}\right)$
$\Rightarrow x=-1, y=-1, z=-1$
$\therefore x^{2}+y^{2}+z^{2}=1+1+1=3$