Question:
If $\alpha=\cos ^{-1}\left(\frac{3}{5}\right), \beta=\tan ^{-1}\left(\frac{1}{3}\right)$, where $0<\alpha, \beta<\frac{\pi}{2}$, then $\alpha-\beta$ is equal to :
Correct Option: , 4
Solution:
$\because \cos \alpha=\frac{3}{5}$, then $\sin \alpha=\frac{4}{5}$
$\Rightarrow \tan \alpha=\frac{4}{3}$
and $\tan \beta=\frac{1}{3}$
$\because \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \cdot \tan \beta}$
$=\frac{\frac{4}{3}-\frac{1}{3}}{1+\frac{4}{9}}=\frac{1}{\frac{13}{9}}=\frac{9}{13}$
$\therefore \alpha-\beta=\tan ^{-1}\left(\frac{9}{13}\right)=\sin ^{-1}\left(\frac{9}{5 \sqrt{10}}\right)$
$=\cos ^{-1}\left(\frac{13}{5 \sqrt{10}}\right)$