Question:
If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=-\frac{3 \pi}{2}$, then $x y z=$ __________________.
Solution:
We know
$-\frac{\pi}{2} \leq \sin ^{-1} a \leq \frac{\pi}{2}$, for all $a \in[-1,1]$
So, the minimum value of $\sin ^{-1} a$ is $-\frac{\pi}{2}$.
Now,
$\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=-\frac{3 \pi}{2} \quad$ (Given)
This is possible if
$\sin ^{-1} x=-\frac{\pi}{2}, \sin ^{-1} y=-\frac{\pi}{2}$ and $\sin ^{-1} z=-\frac{\pi}{2}$
$\Rightarrow x=-1, y=-1$ and $z=-1$
$\therefore x y z=(-1) \times(-1) \times(-1)=-1$
If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=-\frac{3 \pi}{2}$, then $x y z=$ ___−1___.