If

Question:

If $\int_{0}^{x} f(\mathrm{t}) \mathrm{d} \mathrm{t}=x^{2}+\int_{x}^{1} \mathrm{t}^{2} f(\mathrm{t}) \mathrm{dt}$, then $f^{\prime}(1 / 2)$ is:

 

  1. (1) $\frac{24}{25}$

  2. (2) $\frac{18}{25}$

  3. (3) $\frac{4}{5}$

  4. (4) $\frac{6}{25}$


Correct Option: 1

Solution:

$\int_{0}^{x} f(t) d t=x^{2}+\int_{x}^{1} t^{2} f(t) d t$

$\Rightarrow \quad f(x)=2 x-x^{2} f(x)$

$\Rightarrow \quad f(x)=\frac{2 x}{1+x^{2}}$

$\Rightarrow \quad f^{\prime}(x)=\frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}$

Then,

$f^{\prime}(1 / 2)=\frac{2\left(1-\frac{1}{4}\right)}{\left(1+\frac{1}{4}\right)^{2}}=\frac{3}{2} \times \frac{16}{25}=\frac{24}{25}$

Leave a comment