If $\cos A+\cos B=\frac{1}{2}$ and $\sin A+\sin B=\frac{1}{4}$, prove that $\tan \left(\frac{A+B}{2}\right)=\frac{1}{2}$.
Given:
$\sin A+\sin B=\frac{1}{4}$ ....(i)
$\cos A+\cos B=\frac{1}{2}$ ....(ii)
Dividing (i) by (ii):
$\Rightarrow \frac{\sin A+\sin B}{\cos A+\cos B}=\frac{\frac{1}{4}}{\frac{1}{2}}$
$\Rightarrow \frac{2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}{2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}=\frac{1}{2}$
$\left[\because \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right.$ and $\left.\cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right]$
$\Rightarrow \frac{\sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}{\cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}=\frac{1}{2}$
$\Rightarrow \tan \left(\frac{A+B}{2}\right)=\frac{1}{2}$
Hence proved.