if

Question:

If $\int e^{\sec x}\left(\sec x \tan x f(x)+\left(\sec x \tan x+\sec ^{2} x\right)\right) d x$

$=e^{\sec x} f(x)+\mathrm{C}$, then a possible choice of $f(x)$ is:

  1. (1) $\sec x+\tan x+\frac{1}{2}$

  2. (2) $\sec x-\tan x-\frac{1}{2}$

  3. (3) $\sec x+x \tan x-\frac{1}{2}$

  4. (4) $x \sec x+\tan x+\frac{1}{2}$


Correct Option: 1

Solution:

Given,

$\int e^{\sec x}\left(\sec x \tan x f(x)+\left(\sec x+\tan x+\sec ^{2} x\right)\right) d x$

$=e^{\sec x} f(x)+C \quad \ldots(1)$

$\because \int e^{g(x)}\left(\left(g^{\prime}(x) f(x)\right)+f^{\prime}(x)\right) d x=e^{g(x)} \times f(x)+C$

Our comparing above equation by equation (1),

$f(x)=\int\left((\sec x \tan x)+\sec ^{2} x\right) d x$

$\therefore f(x)=\sec x+\tan x+C$

Leave a comment