Question:
If $\frac{\pi}{2}
Solution:
Given for $\frac{\pi}{2} $\sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}$ $\left[\right.$ using identities; $\left.1-\cos 2 x=2 \sin ^{2} x 1+\cos 2 x=2 \cos ^{2} x\right]$ $=\sqrt{\frac{2 \sin ^{2} x}{2 \cos ^{2} x}}$ $=\sqrt{\tan ^{2} x}$ $=|\tan x|$ Since $\frac{\pi}{2} i. e. $|\tan x|=-\tan x$ $\therefore \sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}=-\tan x$