If $e^{f(x)}=\frac{10+x}{10-x}, x \in(-10,10)$ and $f(x)=k f\left(\frac{200 x}{100+x^{2}}\right)$, then $k=$
(a) 0.5
(b) 0.6
(c) 0.7
(d) 0.8
(a) 0.5
$e^{f(x)}=\frac{10+x}{10-x}$
$\Rightarrow f(x)=\log _{e}\left(\frac{10+x}{10-x}\right) \ldots(1)$
$f(x)=k f\left(\frac{200 x}{100+x^{2}}\right)$
$\Rightarrow \log _{e}\left(\frac{10+x}{10-x}\right)=k \log _{e}\left(\frac{10+\frac{200 x}{100+x^{2}}}{10-\frac{200 x}{100+x^{2}}}\right) \quad\{$ from $(1)\}$
$\Rightarrow \log _{e}\left(\frac{10+x}{10-x}\right)=k l \operatorname{og}_{e}\left(\frac{1000+10 x^{2}+200 x}{1000+10 x^{2}-200 x}\right)$
$\Rightarrow \log _{e}\left(\frac{10+x}{10-x}\right)=k l \log _{e}\left(\frac{(x+10)^{2}}{(x-10)^{2}}\right)$
$\Rightarrow \log _{e}\left(\frac{10+x}{10-x}\right)=2 k \log _{e} \frac{(x+10)}{(x-10)}$
$\Rightarrow 1=2 k$
$\Rightarrow k=1 / 2=0.5$