Question:
If $\cot \left(\cos ^{-1} \frac{3}{5}+\sin ^{-1} x\right)=0$, find the values of $x$.
Solution:
$\cot \left(\cos ^{-1} \frac{3}{5}+\sin ^{-1} x\right)=0$
$\Rightarrow \cos ^{-1} \frac{3}{5}+\sin ^{-1} x=\cot 0$
$\Rightarrow \cos ^{-1} \frac{3}{5}+\sin ^{-1} x=\frac{\pi}{2}$
$\Rightarrow \cos ^{-1} \frac{3}{5}=\frac{\pi}{2}-\sin ^{-1} x$
$\Rightarrow \cos ^{-1} \frac{3}{5}=\cos ^{-1} x \quad\left[\because \cos ^{-1} x=\frac{\pi}{2}-\sin ^{-1} x\right]$
$\Rightarrow x=\frac{3}{5}$