Question:
If $7 \sin ^{2} \theta+3 \cos ^{2} \theta=4$, show that $\tan \theta=\frac{1}{\sqrt{3}}$
Solution:
Given: $7 \sin ^{2} \theta+3 \cos ^{2} \theta=4$ and we have to prove that $\tan \theta=\frac{1}{\sqrt{3}}$
We can write the given expression as
$\left(7 \sin ^{2} \theta\right)+3 \cos ^{2} \theta=4$
$\Rightarrow \quad\left(4 \sin ^{2} \theta+3 \sin ^{2} \theta\right)+3 \cos ^{2} \theta=4$
$\Rightarrow \quad 4 \sin ^{2} \theta+3\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=4$
$\Rightarrow \quad 4 \sin ^{2} \theta+3(1)=4$
$\Rightarrow \quad 4 \sin ^{2} \theta=4-3$
$\Rightarrow \quad \sin ^{2} \theta=\frac{1}{4}$
$\Rightarrow \quad \sin \theta=\pm \frac{1}{2}$
$\Rightarrow \quad 0=30^{\circ}$
Therefore,
$\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
Hence proved