If 5x = sec θ and 5x=tan θ, find the value of 5(x2−1x2).

Question:

If $5 x=\sec \theta$ and $\frac{5}{x}=\tan \theta$, find the value of $5\left(x^{2}-\frac{1}{x^{2}}\right)$

Solution:

Given:

$5 x=\sec \theta, \frac{5}{x}=\tan \theta$

$\Rightarrow \sec \theta=5 x, \tan \theta=\frac{5}{x}$

We know that,

$\sec ^{2} \theta-\tan ^{2} \theta=1$

$\Rightarrow(5 x)^{2}-\left(\frac{5}{x}\right)^{2}=1$

$\Rightarrow 25 x^{2}-\frac{25}{x^{2}}=1$

$\Rightarrow 5 \times 5 \times\left(x^{2}-\frac{1}{x^{2}}\right)=1$

$\Rightarrow 5\left(x^{2}-\frac{1}{x^{2}}\right)=\frac{1}{5}$

Leave a comment