Question:
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
Solution:
Let $a$ be the first term and $r$ be the common ratio of the given G.P.
$\therefore p=5^{\text {th }}$ term
$\Rightarrow p=a r^{4}$ ...(1)
$q=8^{\text {th }}$ term
$\Rightarrow q=a r^{7}$ ...(2)
$s=11^{\text {th }}$
$\Rightarrow s=a r^{10}$ ...(3)
Now, $q^{2}=\left(a r^{7}\right)^{2}=a^{2} r^{14}$
$\Rightarrow\left(a r^{4}\right)\left(a r^{10}\right)=p s \quad[$ From $(1)$ and $(3)]$
$\therefore q^{2}=p s$