If $y=2 \tan ^{-1} x+\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ for all $x$, then $y$ lies in the interval _________________.
We know
$2 \tan ^{-1} x= \begin{cases}\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right), & -1 \leq x \leq 1 \\ \pi-\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right), & x>1 \\ -\pi-\sin ^{-1}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right), & x<-1\end{cases}$
$\therefore y=2 \tan ^{-1} x+\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)= \begin{cases}4 \tan ^{-1} x, & -1 \leq x \leq 1 \\ \pi, & x>1 \\ -\pi, & x<-1\end{cases}$
For $-1 \leq x \leq 1$
$-\frac{\pi}{4} \leq \tan ^{-1} x \leq \frac{\pi}{4}$
$\Rightarrow-\pi \leq 4 \tan ^{-1} x \leq \pi$
$\Rightarrow-\pi \leq y \leq \pi$ ....(1)
For $x>1, y=\pi$ ...(2)
For $x<-1, y=-\pi$ ...(3)
From (1), (2) and (3), we get
$y \in[-\pi, \pi]$, for all $x \in \mathrm{R}$
Thus, the range of $y$ is $[-\pi, \pi]$.
If $y=2 \tan ^{-1} x+\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ for all $x$, then $y$ lies in the interval $[-\pi, \pi]$