Question:
If $5 x+9=0$ is the directrix of the hyperbola $16 x^{2}-9 y^{2}=144$, then its corresponding focus is :
Correct Option: , 4
Solution:
$16 x^{2}-9 y^{2}=144 \Rightarrow \frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
Then focus is S' $(-a e, 0)$
$x=\frac{-9}{5}$
$\mathrm{a}=3, \mathrm{~b}=4 \Rightarrow e^{2}=1+\frac{16}{9}=\frac{25}{9} \quad\left[\because e=\sqrt{1+\frac{b^{2}}{a^{2}}}\right]$
$\therefore$ the focus $S^{\prime} \equiv\left(3-\times \frac{5}{3}, 0\right) \equiv(-5,0)$