If $5 \tan \theta-4=0$, then the value of $\frac{5 \sin \theta-4 \cos \theta}{5 \sin \theta+4 \cos \theta}$ is
(a) $\frac{5}{3}$
(b) $\frac{5}{6}$
(c) 0
(d) $\frac{1}{6}$
Given that $5 \tan \theta-4=0 .$ We have to find the value of the following expression
$\frac{5 \sin \theta-4 \cos \theta}{5 \sin \theta+4 \cos \theta}$
Since $5 \tan \theta-4=0 \Rightarrow \tan \theta=\frac{4}{5}$
We know that: $\tan \theta=\frac{\text { Perpendicular }}{\text { Base }}$
$\Rightarrow$ Base $=5$
$\Rightarrow$ Perpendicular $=4$
$\Rightarrow$ Hypotenuse $=\sqrt{(\text { Perpendicular })^{2}+(\text { Base })^{2}}$
$\Rightarrow$ Hypotenuse $=\sqrt{16+25}$
$\Rightarrow$ Hypotenuse $=\sqrt{41}$
Since $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$ and $\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}$
Now we find
$\frac{5 \sin \theta-4 \cos \theta}{5 \sin \theta+4 \cos \theta}$
$=\frac{5 \times \frac{4}{\sqrt{41}}-4 \times \frac{5}{\sqrt{41}}}{5 \times \frac{4}{\sqrt{41}}+4 \times \frac{5}{\sqrt{41}}}$
$=\frac{\frac{20}{\sqrt{41}}-\frac{20}{\sqrt{41}}}{\frac{20}{\sqrt{41}}+\frac{20}{\sqrt{41}}}$
$=0$
Hence the correct option is $(c)$