If $5 \sin \alpha=3 \sin (\alpha+2 \beta) \neq 0$, then tan $(\alpha+\beta)$ is equal to
(a) $2 \tan \beta$
(b) $3 \tan \beta$
(c) $4 \tan \beta$
(d) $6 \tan \beta$
(c) $4 \tan \beta$
We have,
$5 \sin \alpha=3 \sin (\alpha+2 \beta)$
$\Rightarrow \frac{5}{3}=\frac{\sin (\alpha+2 \beta)}{\sin \alpha}$
$\Rightarrow \frac{5-3}{5+3}=\frac{\sin (\alpha+2 \beta)-\sin \alpha}{\sin (\alpha+2 \beta)+\sin \alpha} \quad$ (Using componendo and dividendo)
$\Rightarrow \frac{2}{8}=\frac{\sin (\alpha+2 \beta)-\sin \alpha}{\sin (\alpha+2 \beta)+\sin \alpha}$
$\Rightarrow \frac{1}{4}=\frac{2 \cos \frac{\alpha+2 \beta+\alpha}{2} \sin \frac{\alpha+2 \beta-\alpha}{2}}{2 \sin \frac{\alpha+2 \beta+\alpha}{2} \cos \frac{\alpha+2 \beta-\alpha}{2}}$
$\Rightarrow \frac{1}{4}=\frac{\cos (\alpha+\beta) \sin \beta}{\sin (\alpha+\beta) \cos \beta}$
$\Rightarrow \frac{1}{4}=\cot (\alpha+\beta) \tan \beta$
$\Rightarrow \frac{1}{4}=\frac{1}{\tan (\alpha+\beta)} \tan \beta$
$\therefore \tan (\alpha+\beta)=4 \tan \beta$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.