If $\frac{5+9+13+\ldots \text { to } n \text { terms }}{7+9+11+\ldots \text { to }(n+1) \text { terms }}=\frac{17}{16}$, then $n=$
(a) 8
(b) 7
(c) 10
(d) 11
Here, we are given,
$\frac{5+9+13+\ldots \text { to } n \text { terms }}{7+9+11+\ldots \text { to }(n+1) \text { terms }}=\frac{17}{16}$ .......(1)
We need to find n.
So, first let us find out the sum of n terms of the A.P. given in the numerator. Here we use the following formula for the sum of n terms of an A.P.,
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Where; a = first term for the given A.P.
d = common difference of the given A.P.
n = number of terms
Here,
Common difference of the A.P. (d) =
$=9-5$
$=4$
Number of terms (n) = n
First term for the given A.P. (a) =
So, using the formula we get,
$S_{n}=\frac{n}{2}[2(5)+(n-1)(4)]$
$=\left(\frac{n}{2}\right)[10+(4 n-4)]$
$=\left(\frac{n}{2}\right)(6+4 n)$
$=n(3+2 n)$ ...........(2)
Similarly, we find out the sum of $(n+1)$ terms of the A.P. given in the denominator $(7+9+11+\ldots)$.
Here,
Common difference of the A.P. $(d)=a_{2}-a_{1}$
$=9-7$
$=2$
Number of terms (n) = n
First term for the given A.P. (a) =
So, using the formula we get,
$S_{n+1}=\frac{n+1}{2}[2(7)+[(n+1)-1](2)]$
$=\left(\frac{n+1}{2}\right)[14+(n)(2)]$
$=(n+1)(7+n)$
$=7 n+7+n^{2}+n$
$=n^{2}+8 n+7$$\ldots(3)$
Now substituting the values of (2) and (3) in equation (1), we get,
$\frac{2 n^{2}+3 n}{n^{2}+8 n+7}=\frac{17}{16}$
$16\left(2 n^{2}+3 n\right)=17\left(n^{2}+8 n+7\right)$
$32 n^{2}+48 n=17 n^{2}+136 n+119$
$32 n^{2}-17 n^{2}+48 n-136 n-119=0$
$15 n^{2}-88 n-119=0$
Further solving the quadratic equation for n by splitting the middle term, we get,
$15 n^{2}-88 n-119=0$
$15 n^{2}-105 n+17 n-119=0$
$15 n(n-7)+17(n-7)=0$
$(15 n+17)(n-7)=0$
So, we get
$15 n+17=0$
$15 n=-17$
$n=\frac{-17}{15}$
Or
$n-7=0$
$n=7$
Since n is a whole number, it cannot be a fraction. So,
Therefore, the correct option is (b).