Question:
If 4tan θ = 3 then (cos2 θ – sin2 θ) = ?
(a) $\frac{4}{25}$
(b) $\frac{7}{25}$
(c) 1
(d) $\frac{11}{25}$
Solution:
Given : $4 \tan \theta=3$
$\Rightarrow \tan \theta=\frac{3}{4}$
Since, $\tan \theta=\frac{P}{B}$
$\Rightarrow P=3$ and $B=4$
Using Pythagoras theorem,
$P^{2}+B^{2}=H^{2}$
$\Rightarrow 3^{2}+4^{2}=H^{2}$
$\Rightarrow H^{2}=9+16$
$\Rightarrow H^{2}=25$
$\Rightarrow H=5$
Therefore,
$\sin \theta=\frac{P}{H}=\frac{3}{5}$
$\cos \theta=\frac{B}{H}=\frac{4}{5}$
$\cos ^{2} \theta-\sin ^{2} \theta=\left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2}$
$=\frac{16}{25}-\frac{9}{25}$
$=\frac{16-9}{25}$
$=\frac{7}{25}$
Hence, the correct option is (b).