If 3f

Question:

If $3 f(x)+5 f\left(\frac{1}{x}\right)=\frac{1}{x}-3$ for all non-zero $x$, then $f(x)=$

(a) $\frac{1}{14}\left(\frac{3}{x}+5 x-6\right)$

(b) $\frac{1}{14}\left(-\frac{3}{x}+5 x-6\right)$

(c) $\frac{1}{14}\left(-\frac{3}{x}+5 x+6\right)$

(d) None of these

Solution:

(d) None of these

$3 f(x)+5 f\left(\frac{1}{x}\right)=\frac{1}{x}-3$    ...91)

Multiplying (1) by 3 :

15 f\left(\frac{1}{x}\right)+9 f(x)=\frac{3}{x}-9 \ldots \ldots(2)

Replacing $x$ by $\frac{1}{x}$ in $(1)$ :

$3 f\left(\frac{1}{x}\right)+5 f(x)=x-3$

Multiplying by 5 :

$15 f\left(\frac{1}{x}\right)+25 f(x)=5 x-15 \ldots(3)$

Solving $(2)$ and $(3)$ :

$-16 f(x)=\frac{3}{\mathrm{x}}-5 \mathrm{x}+6$

$\Rightarrow f(x)=\frac{1}{16}\left(-\frac{3}{\mathrm{x}}+5 \mathrm{x}-6\right)$

Disclaimer: The question in the book has some error, so, none of the options are matching with the solution. The solution is created according to the question given in the book.

Leave a comment