If $\alpha+\beta=\frac{\pi}{4}$, then the value of $(1+\tan \alpha)(1+\tan \beta)$ is
(a) 1
(b) 2
(c) –2
(d) not defined
Given $\alpha+\beta=\frac{\pi}{4}$
$(1+\tan \alpha)(1+\tan \beta)$
$1+\tan \alpha+\tan \beta+\tan \alpha \tan \beta$
$=1+\tan (\alpha+\beta)(1-\tan \alpha \tan \beta)+\tan \alpha \tan \beta$
using identity : $\tan (a+b)=\frac{\tan a+\tan b}{1-\tan a \tan b}$
$=1+\tan (\pi / 4)(1-\tan \alpha \tan \beta)+\tan \alpha \tan \beta(\because \alpha+\beta=\pi / 4$ given $)$
$=1+1(1-\tan \alpha \tan \beta)+\tan \alpha \tan \beta$
$=1+1-\tan \alpha \tan \beta+\tan \alpha \tan \beta$
$=2$
Hence, $(1+\tan \alpha)(1+\tan \beta)=2$
Hence, the corrrect answer is option B.
Since $\alpha+\beta=\pi / 4$
$\Rightarrow \tan (\alpha+\beta)=\tan \pi / 4$
$\Rightarrow \frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=1 \quad$ (using identity : $\left.\tan (a+b)=\frac{\tan a+\tan b}{1-\tan \tan b}\right)$
$\Rightarrow \tan \alpha+\tan \beta=1-\tan \alpha \tan \beta$
$\Rightarrow \tan \alpha+\tan \alpha \tan \beta+\tan \beta=1$
$\Rightarrow 1+\tan \alpha+\tan \beta(1+\tan \alpha)=1+1$
$\Rightarrow(1+\tan \alpha)(1+\tan \beta)=2$
Hence, the correct answer option B.