If $\theta=30^{\circ}$, verify that
(i) $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
(ii) $\sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}$
(iii) $\cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$
(iv) $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$
(i) Given:'
$\theta=30^{\circ}$....(1)
To verify:
$\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$....(2)
Now consider LHS of the expression to be verified in equation (2)
Therefore,
LHS $=\tan 2 \theta$
Now by substituting the value of $\theta$ from equation (1) in the above expression
We get,
$\mathrm{LHS}=\tan 2 \times\left(30^{\circ}\right)$
$=\tan 60^{\circ}$
$=\sqrt{3}$
Now by substituting the value of $\theta$ from equation (1) in the expression $\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
We get,
$\mathrm{RHS}=\frac{2 \tan \left(30^{\circ}\right)}{1-\tan ^{2}\left(30^{\circ}\right)}$....(4)
$\mathrm{RHS}=\frac{2 \times \frac{1}{\sqrt{3}}}{1-\left(\frac{1}{\sqrt{3}}\right)^{2}}$
$=\frac{\frac{2}{\sqrt{3}}}{1-\frac{1^{2}}{(\sqrt{3})^{2}}}$
$=\frac{\frac{2}{\sqrt{3}}}{\frac{3-1}{3}}$
$=\sqrt{3}$
Now by comparing equation (3) and (4)
We get,
$\mathrm{LHS}=\mathrm{RHS}=\sqrt{3}$
Hence $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
(ii) Given:
$\theta=30^{\circ} \ldots \ldots(1)$
To verify:
$\sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}$...(2)
$\sin 2 \theta=\sin 2 \times 30$
$=\sin 60$
$=\frac{\sqrt{3}}{2}$
Now consider right hand side
$\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\frac{2 \tan 30}{1+\tan ^{2} 30}$
$=\frac{2 \times \frac{1}{\sqrt{3}}}{1+\left(\frac{1}{\sqrt{3}}\right)^{2}}$
$=\frac{\sqrt{3}}{2}$
Hence it is verified that,
$\sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}$
(iii) Given:
$\theta=30^{\circ}$....(1)
To verify:
$\cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$....(2)
Now consider left hand side of the equation (2)
Therefore,
$\cos 2 \theta=\cos 2 \times 30$
$=\cos 60$
$=\frac{1}{2}$
Now consider right hand side of equation (2)
Therefore,
$\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{1-(\tan 30)^{2}}{1+(\tan 30)^{2}}$
$=\frac{1-\left(\frac{1}{\sqrt{3}}\right)^{2}}{1+\left(\frac{1}{\sqrt{3}}\right)^{2}}$
$=\frac{1-\frac{1}{3}}{1+\frac{1}{3}}$
$=\frac{1}{2}$
Hence it is verified that,
$\cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$
(iv) Given:
$\theta=30^{\circ}$...(1)
To verify:
$\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta \ldots \ldots(2)$
Now consider left hand side of the expression in equation (2)
Therefore
$\cos 3 \theta=\cos 3 \times 30$
$=\cos 90$
$=0$
Now consider right hand side of the expression to be verified in equation (2)
Therefore,
$4 \cos ^{3} \theta-3 \cos \theta=4 \cos ^{3} 30-3 \cos 30$
$=4 \times\left(\frac{\sqrt{3}}{2}\right)^{3}-3 \times \frac{\sqrt{3}}{2}$
$=\frac{3 \sqrt{3}}{2}-\frac{3 \sqrt{3}}{2}$
$=0$
Hence it is verified that,
$\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$