If 3 tan A = 4 then prove that
(i) $\sqrt{\frac{\sec A-\operatorname{cosec} A}{\sec A+\operatorname{cosec} A}}=\frac{1}{\sqrt{7}}$
(ii) $\sqrt{\frac{1-\sin A}{1+\cos A}}=\frac{1}{2 \sqrt{2}}$
(i)
$\mathrm{LHS}=\sqrt{\frac{\sec \theta-\operatorname{cosec} \theta}{\sec \theta+\operatorname{cosec} \theta}}$
$=\sqrt{\frac{\left(\frac{1}{\cos \theta}-\frac{1}{\sin \theta}\right)}{\left(\frac{1}{\cos \theta}+\frac{1}{\sin \theta}\right)}}$
$=\sqrt{\frac{\left(\frac{\sin \theta-\cos \theta}{\sin \theta \cos \theta}\right)}{\left(\frac{\sin \theta+\cos \theta}{\sin \theta \cos \theta}\right)}}$
$=\sqrt{\frac{\left(\frac{\sin \theta-\cos \theta}{\sin \theta}\right)}{\left(\frac{\sin \theta+\cos \theta}{\sin \theta}\right)}}$
$=\sqrt{\frac{\left(\frac{\sin \theta}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)}{\left(\frac{\sin \theta}{\sin \theta}+\frac{\cos \theta}{\sin \theta}\right)}}$
$=\sqrt{\frac{1-\cot \theta}{1+\cot \theta}}$
$=\sqrt{\frac{\left(1-\frac{3}{4}\right)}{\left(1+\frac{3}{4}\right)}}$
$=\sqrt{\frac{\left(\frac{1}{4}\right)}{\left(\frac{7}{4}\right)}}$
$=\sqrt{\frac{1}{7}}$
$=\frac{1}{\sqrt{7}}$
$=$ RHS
(ii)
Given : $3 \tan A=4$
$\Rightarrow \tan A=\frac{4}{3}$
Since, $\tan A=\frac{P}{B}$
$\Rightarrow P=4$ and $B=3$
Using Pythagoras theorem,
$P^{2}+B^{2}=H^{2}$
$\Rightarrow 4^{2}+3^{2}=H^{2}$
$\Rightarrow H^{2}=16+9$
$\Rightarrow H^{2}=25$
$\Rightarrow H=5$
Therefore,
$\sin A=\frac{P}{H}=\frac{4}{5}$
$\cos A=\frac{B}{H}=\frac{3}{5}$
Now,
$\sqrt{\frac{1-\sin A}{1+\cos A}}=\sqrt{\frac{1-\frac{4}{5}}{1+\frac{3}{5}}}$
$=\sqrt{\frac{\frac{5-4}{\frac{5}{\frac{5+3}{5}}}}{5}}$
$=\sqrt{\frac{\frac{1}{5}}{\frac{8}{5}}}$
$=\sqrt{\frac{1}{8}}$
$=\frac{1}{2 \sqrt{2}}$
Hence, $\sqrt{\frac{1-\sin A}{1+\cos A}}=\frac{1}{2 \sqrt{2}}$.