Question:
If $\sqrt{3} \tan \theta=3 \sin \theta$, find the value of $\sin ^{2} \theta-\cos ^{2} \theta$.
Solution:
Given: $\sqrt{3} \tan \theta=3 \sin \theta$
We have to find the value of $\sin ^{2} \theta-\cos ^{2} \theta$.
$\sqrt{3} \tan \theta=3 \sin \theta$
$\Rightarrow \sqrt{3} \frac{\sin \theta}{\cos \theta}=3 \sin \theta$
$\Rightarrow \cos \theta=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}$
Therefore,
$\sin ^{2} \theta-\cos ^{2} \theta=1-\cos ^{2} \theta-\cos ^{2} \theta \quad\left(\right.$ since, $\left.\sin ^{2} \theta+\cos ^{2} \theta=1\right)$
$=1-2 \cos ^{2} \theta$
$=1-2 \times\left(\frac{1}{\sqrt{3}}\right)^{2}$
$=\frac{1}{3}$
Hence, the value of the expression is $\frac{1}{3}$.