If $3 \cot \theta=4$, find the value of $\frac{4 \cos \theta-\sin \theta}{2 \cos \theta+\sin \theta}$.
We have:
$3 \cot \theta=4$
$\cot \theta=\frac{4}{3}$
Since we know that in right angle triangle
$\cot \theta=\frac{\text { Base }}{\text { perpendicular }}$
$\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}$
$\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
Hypotenuse $=\sqrt{(\text { Perpendicular })^{2}+(\text { Base })^{2}}$
Hypotenuse $=\sqrt{(3)^{2}+(4)^{2}}$
Hypotenuse $=\sqrt{25}$
Hypotenuse $=5$
Now, we find $\frac{4 \cos \theta-\sin \theta}{2 \cos \theta+\sin \theta}$
$\Rightarrow \frac{4 \cos \theta-\sin \theta}{2 \cos \theta+\sin \theta}=\frac{4 \times \frac{4}{5}-\frac{3}{5}}{2 \times \frac{4}{5}+\frac{3}{5}}$
$\Rightarrow \frac{4 \cos \theta-\sin \theta}{2 \cos \theta+\sin \theta}=\frac{\frac{16}{5}-\frac{3}{5}}{\frac{8}{5}+\frac{3}{5}}$
$\Rightarrow \frac{4 \cos \theta-\sin \theta}{2 \cos \theta+\sin \theta}=\frac{\frac{13}{5}}{\frac{11}{5}}$
$\Rightarrow \frac{4 \cos \theta-\sin \theta}{2 \cos \theta+\sin \theta}=\frac{13}{11}$
Hence the value of $\frac{4 \cos \theta-\sin \theta}{2 \cos \theta+\sin \theta}$ is $\frac{13}{11}$