If $3 \cot \theta=2$, find the value of $\frac{4 \sin \theta-3 \cos \theta}{2 \sin \theta+6 \cos \theta}$.
Given:
$3 \cot \theta=2$
Therefore,
$\cot \theta=\frac{2}{3}$..(1)
Now, we know that $\cot \theta=\frac{\cos \theta}{\sin \theta}$
Therefore equation (1) becomes
$\frac{\cos \theta}{\sin \theta}=\frac{2}{3}$...(2)
Now, by applying Invertendo to equation (2)
We get,
$\frac{\sin \theta}{\cos \theta}=\frac{3}{2}$…… (3)
Now, multiplying by $\frac{4}{3}$ on both sides
We get,
$\frac{4}{3} \times \frac{\sin \theta}{\cos \theta}=\frac{4}{3} \times \frac{3}{2}$
Therefore, 3 cancels out on R.H.S and
We get,
$\frac{4 \sin \theta}{3 \cos \theta}=\frac{2}{1}$
Now by applying dividendo in above equation
We get,
$\frac{4 \sin \theta-3 \cos \theta}{3 \sin \theta}=\frac{2-1}{1}$
$\frac{4 \sin \theta-3 \cos \theta}{3 \sin \theta}=\frac{1}{1}$....(4)
Now, multiplying by $\frac{2}{6}$ on both sides of equation (3)
We get,
$\frac{2}{6} \times \frac{\sin \theta}{\cos \theta}=\frac{2}{6} \times \frac{3}{2}$
Therefore, 2 cancels out on R.H.S and
We get,
$\frac{2 \sin \theta}{6 \cos \theta}=\frac{3}{6}$
$\frac{2 \sin \theta}{6 \cos \theta}=\frac{1}{2}$
Now by applying componendo in above equation
We get,
$\frac{2 \cos \theta+6 \sin \theta}{6 \sin \theta}=\frac{1+2}{2}$
$\frac{2 \cos \theta+6 \sin \theta}{6 \sin \theta}=\frac{3}{2}$....(5)
Now, by dividing equation (4) by equation (5)
We get,
$\frac{\frac{4 \sin \theta-3 \cos \theta}{3 \sin \theta}}{\frac{2 \cos \theta+6 \sin \theta}{6 \sin \theta}}=\frac{\frac{1}{1}}{\frac{3}{2}}$
Therefore,
$\frac{4 \sin \theta-3 \cos \theta}{3 \sin \theta} \times \frac{6 \sin \theta}{2 \cos \theta+6 \sin \theta}=\frac{1}{1} \times \frac{2}{3}$
$\frac{4 \sin \theta-3 \cos \theta}{3 \sin \theta} \times \frac{2 \times(3 \sin \theta)}{2 \cos \theta+6 \sin \theta}=\frac{1}{1} \times \frac{2}{3}$
Therefore, on L.H.S $(3 \sin \theta)$ cancels out and we get,
$\frac{2 \times(4 \sin \theta-3 \cos \theta)}{2 \cos \theta+6 \sin \theta}=\frac{2}{3}$
Now, by taking 2 in the numerator of L.H.S on the R.H.S
We get,
$\frac{4 \sin \theta-3 \cos \theta}{2 \cos \theta+6 \sin \theta}=\frac{2}{3 \times 2}$
Hence,
$\frac{4 \sin \theta-3 \cos \theta}{2 \cos \theta+6 \sin \theta}=\frac{1}{3}$