If $3 \cos \theta=5 \sin \theta$, then the value of $\frac{5 \sin \theta-2 \sec ^{3} \theta+2 \cos \theta}{5 \sin \theta+2 \sec ^{3} \theta-2 \cos \theta}$ is
(a) $\frac{271}{979}$
(b) $\frac{316}{2937}$
(c) $\frac{542}{2937}$
(d) None of these
We have,
$3 \cos \theta=5 \sin \theta$
So we can manipulate it as,
$\tan \theta=\frac{3}{5}$
So now we can get the values of other trigonometric ratios,
$\sin \theta=\frac{3}{\sqrt{34}}$
$\cos \theta=\frac{5}{\sqrt{34}}$
$\sec \theta=\frac{\sqrt{34}}{5}$
So now we will put these values in the equation,
$=\frac{5 \sin \theta-2 \sec ^{3} \theta+2 \cos \theta}{5 \sin \theta-2 \sec ^{3} \theta-2 \cos \theta}$
$=\frac{5\left(\frac{3}{\sqrt{34}}\right)-2\left(\frac{34 \sqrt{34}}{125}\right)+\frac{10}{\sqrt{34}}}{5\left(\frac{3}{\sqrt{34}}\right)+2\left(\frac{34 \sqrt{34}}{125}\right)-\frac{10}{\sqrt{34}}}$
$=\frac{(15)(125)-(2)(34)^{2}+1250}{(15)(125)+(2)(34)^{2}-1250}$
$=\frac{271}{979}$
So the answer is (a).