If $3 \cos \theta-4 \sin \theta=2 \cos \theta+\sin \theta$, find $\tan \theta$.
Given: $3 \cos \theta-4 \sin \theta=2 \cos \theta+\sin \theta$
To find: $\tan \theta$
Now consider the given expression
$3 \cos \theta-4 \sin \theta=2 \cos \theta+\sin \theta$
Now by dividing both sides of the above expression by $\cos \theta$
We get,
$\frac{3 \cos \theta-4 \sin \theta}{\cos \theta}=\frac{2 \cos \theta+\sin \theta}{\cos \theta}$
Now by separating the denominator for each terms
We get,
$\frac{3 \cos \theta}{\cos \theta}-\frac{4 \sin \theta}{\cos \theta}=\frac{2 \cos \theta}{\cos \theta}+\frac{\sin \theta}{\cos \theta}$
Now in the above expression $\cos \theta$ present in both numerator and denominator gets cancelled
Therefore,
$3-\frac{4 \sin \theta}{\cos \theta}=2+\frac{\sin \theta}{\cos \theta}$....(1)
Now we know that,
$\frac{\sin \theta}{\cos \theta}=\tan \theta$
Therefore by substituting $\frac{\sin \theta}{\cos \theta}=\tan \theta$ in equation(1)
We get,
$3-4 \tan \theta=2+\tan \theta$
Now by taking $\tan \theta$ on L.H.S
We get,
$-\tan \theta-4 \tan \theta=2-3$
Therefore,
$-5 \tan \theta=-1$
$5 \tan \theta=1$
$\tan \theta=\frac{1}{5}$
Hence $\tan \theta=\frac{l}{5}$