If 2x = 3y = 6−z, show that

Question:

If $2^{x}=3^{y}=6$, show that $1 / x+1 / y+1 / z=0$

Solution:

$2^{x}=3^{y}=6^{-z}$

$2^{x}=k$

$2=k^{1 / x}$

$3^{y}=k$

$3=k^{1 / y}$

$6^{-z}=k$

$k=1 / 6^{z}$

$6=k^{-1 / z}$

$2 \times 3=6$

$k^{1 / x} \times k^{1 / y}=k^{-1 / z}$

$1 / x+1 / y=-1 / z$ [by equating exponents]

$1 / x+1 / y+1 / z=0$

Leave a comment