If (27)x = 9/3x, find x

Question:

If $(27)^{x}=9 / 3^{x}$, find $x$

Solution:

We have,

$(27)^{x}=9 / 3^{x}$

$\left(3^{3 x}\right)^{x}=9 / 3^{x}$

$3^{3 x}=9 / 3^{x}$

$3^{3 x}=3^{2} / 3^{x}$

$3^{3 x}=3^{2-x}$

3x = 2 − x [On equating exponents]

3x + x = 2

4x = 2

x = 2/4

x = 1/2

Here the value of x is ½

Leave a comment