If $\frac{\pi}{2}
If $\frac{\pi}{2} $\sqrt{\frac{1+\sin x}{1-\sin x}}+\sqrt{\frac{1-\sin x}{1+\sin x}}=k \sec x \quad$ (given) L.H. $\mathrm{S}=\sqrt{\frac{1+\sin x}{1-\sin x}}+\sqrt{\frac{1-\sin x}{1+\sin x}}$ $=\sqrt{\frac{1+\sin x}{1-\sin x} \times \frac{1+\sin x}{1+\sin x}}+\sqrt{\frac{1-\sin x}{1+\sin x} \times \frac{1-\sin x}{1-\sin x}}$ $=\sqrt{\left[\frac{(1+\sin x)^{2}}{1-\sin ^{2} x}\right]}+\sqrt{\frac{(1-\sin x)^{2}}{1-\sin ^{2} x}}$ $=\sqrt{\frac{(1+\sin x)^{2}}{\cos ^{2} x}}+\sqrt{\frac{(1-\sin x)^{2}}{\cos ^{2} x}}$ $=\frac{1+\sin x}{\sqrt{\cos ^{2} x}}+\frac{(1-\sin x)}{\sqrt{\cos ^{2} x}}$ $=\frac{2}{\sqrt{\cos ^{2} x}}$ Since $\frac{\pi}{2} $=\frac{2}{-\cos x}=-2 \sec x=\mathrm{R} . \mathrm{H} . \mathrm{S} \quad$ (given) $=k \sec x$ $\Rightarrow$ Value of $k=-2$