Question:
If $\frac{\pi}{4}
Solution:
Given for $\frac{\pi}{4} $\sqrt{2+\sqrt{2+2 \cos 4 x}}$ $=\sqrt{2+\sqrt{2(1+\cos 4 x)}}$ $=\sqrt{2+\sqrt{2\left(2 \cos ^{2} 2 x\right)}}$ $=\sqrt{2+\sqrt{4 \cos ^{2} 2 x}}$ $=\sqrt{2+2|\cos 2 x|}$ $\left\{\begin{array}{l}\text { Since } \frac{\pi}{4} $=\sqrt{2-2 \cos 2 x}$ $=\sqrt{2(1-\cos 2 x)}$ $=\sqrt{2\left(2 \sin ^{2} x\right)}$ $=2|\sin x|$ $\sqrt{2+\sqrt{2+2 \cos 4 x}}=2 \sin x \quad\left(\because\right.$ In $\frac{\pi}{4}