If

Question:

If $\pi

Solution:

If $\pi

Given $\sqrt{\frac{1+\cos x}{1-\cos x}}+\sqrt{\frac{1-\cos x}{1+\cos x}}=k \operatorname{cosec} x$

L.H.S is $\sqrt{\frac{1+\cos x}{1-\cos x}}+\sqrt{\frac{1-\cos x}{1+\cos x}}$

$=\sqrt{\frac{1+\cos x}{1-\cos x} \times \frac{1+\cos x}{1+\cos x}}+\sqrt{\frac{1-\cos x}{1+\cos x} \times \frac{1-\cos x}{1-\cos x}}$

$=\sqrt{\frac{(1+\cos x)^{2}}{1-\cos ^{2} x}}+\sqrt{\frac{(1-\cos x)^{2}}{1-\cos ^{2} x}}$

$=\frac{(1+\cos x)}{\sqrt{\sin ^{2} x}}+\frac{(1-\cos x)}{\sqrt{\sin ^{2} x}}$

$=\frac{2}{\sqrt{\sin ^{2} x}}$

Since $\pi

$|\sin x|=-\sin x$

$=\frac{2}{-\sin x}=-2 \operatorname{cosec} x=$ R. H. S $\quad$ (given)

$=k \operatorname{cosec} x$

i. e $k=-2$

Leave a comment