If $A^{T}=\left[\begin{array}{cc}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right]$, find $A^{T}-B^{T}$.
Given: $A^{T}=\left[\begin{array}{cc}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right]$
$B^{T}=\left[\begin{array}{cc}-1 & 1 \\ 2 & 2 \\ 1 & 3\end{array}\right]$
Now,
$A^{T}-B^{T}=\left[\begin{array}{cc}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]-\left[\begin{array}{cc}-1 & 1 \\ 2 & 2 \\ 1 & 3\end{array}\right]$
$=\left[\begin{array}{cc}3+1 & 4-1 \\ -1-2 & 2-2 \\ 0-1 & 1-3\end{array}\right]$
$=\left[\begin{array}{cc}4 & 3 \\ -3 & 0 \\ -1 & -2\end{array}\right]$
Therefore, $A^{T}-B^{T}=\left[\begin{array}{cc}4 & 3 \\ -3 & 0 \\ -1 & -2\end{array}\right]$