That is, $A$ is in third quadrant and $B$ is in first qudrant.
We know that tan function is positive in first and third quadrant $s$,
and in the first quadrant, $\sin e$ function is also positive.
Therefore, $\sin B=\sqrt{1-\cos ^{2} B}$
$=\sqrt{1-\left(\frac{9}{41}\right)^{2}}$
$=\sqrt{1-\frac{81}{1681}}$
$=\sqrt{\frac{1600}{1681}}$
$=\frac{40}{41}$
And $\tan B=\frac{\sin B}{\cos B}$
$=\frac{{ }^{40} /{ }_{41}}{9 / 41}=\frac{40}{9}$
Therefore, $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
$=\frac{\frac{3}{4}+\frac{40}{9}}{1-\frac{3}{4} \times \frac{40}{9}}$
$=\frac{\frac{187}{36}}{\frac{-84}{36}}$
$=\frac{-187}{84}$