Question:
If $\frac{\tan 3 x-1}{\tan 3 x+1}=\sqrt{3}$, then $x=$
Solution:
$\frac{\tan 3 x-1}{\tan 3 x+1}=\sqrt{3}$
i. e $\tan 3 x-1=\sqrt{3} \tan 3 x+\sqrt{3}$
$\tan 3 x-1=\sqrt{3} \tan 3 x+\sqrt{3}$
i.e $-1-\sqrt{3}=\tan 3 x(\sqrt{3}-1)$
i. e $\tan 3 x=-\frac{(1+\sqrt{3})}{\sqrt{3}-1}$
$\tan 3 x=-\tan 75^{\circ}$
$=\tan \left(180-75^{\circ}\right) \quad[\because \tan (180-\theta)=-\tan \theta]$
$\tan 3 x=\tan \frac{7 \pi}{12}$
i. e $3 x=n \pi+\frac{7 \pi}{12}$
i. e $x=\frac{n \pi}{3}+\frac{7 \pi}{36}$ is the general solution