If ^20 C_r is the co-efficient

Question:

If ${ }^{20} \mathrm{C}_{\mathrm{r}}$ is the co-efficient of $\mathrm{x}^{\mathrm{r}}$ in the expansion of $(1+x)^{20}$, then the value of $\sum_{r=0}^{20} r^{2}{ }^{20} C_{r}$ is equal to $:$

 

  1. $420 \times 2^{19}$

  2. $380 \times 2^{19}$

  3. $380 \times 2^{18}$

  4. $420 \times 2^{18}$


Correct Option: 4,

Solution:

$\sum_{r=0}^{20} r^{2} \cdot{ }^{20} C_{r}$

$\sum\left(4(\mathrm{r}-1+) \mathrm{r}{ }^{20} \mathrm{C}_{\mathrm{r}}\right)$

$\sum r\left(r-1 \cdot \frac{20 \times 19}{r(r-1)} \cdot{ }^{18} C_{r}+r \cdot \frac{20}{r} \cdot \sum{ }^{19} C_{r-1}\right.$

$\Rightarrow 20 \times 19.2^{18}+20.2^{19}$

$\Rightarrow 420 \times 2^{18}$

Leave a comment