If 2 cos θ − sin θ = x and cos θ − 3 sin θ = y. Prove that 2x2 + y2 − 2xy = 5.
Given that:
$2 \cos \theta-\sin \theta=x$
$\cos \theta-3 \sin \theta=y$
Then we have to prove that
First we take the LHS and put the value of x and y, we get
$2 x^{2}+y^{2}-2 x y=2(2 \cos \theta-\sin \theta)^{2}+(\cos \theta-3 \sin \theta)^{2}-2(2 \cos \theta-\sin \theta)(\cos \theta-3 \sin \theta)$
$=2\left(4 \cos ^{2} \theta+\sin ^{2} \theta-4 \sin \theta \cos \theta\right)+\left(\cos ^{2} \theta+9 \sin ^{2} \theta-6 \sin \theta \cos \theta\right)$
$-2\left(2 \cos ^{2} \theta-6 \sin \theta \cos \theta-\sin \theta \cos \theta+3 \sin ^{2} \theta\right)$
$=8 \cos ^{2} \theta+2 \sin ^{2} \theta-8 \sin \theta \cos \theta+\cos ^{2} \theta+9 \sin ^{2} \theta-6 \sin \theta \cos \theta-4 \cos ^{2} \theta$
$+12 \sin \theta \cos \theta+2 \sin \theta \cos \theta-6 \sin ^{2} \theta$
$=5 \sin ^{2} \theta+\cos ^{2} \theta$
$=5\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$
$=5(1)$
$=5$
Hence $2 x^{2}+y^{2}-2 x y=5$