If $16 \cot x=12$, then $\frac{\sin x-\cos x}{\sin x+\cos x}$ equals
(a) $\frac{1}{7}$
(b) $\frac{3}{7}$
(c) $\frac{2}{7}$
(d) 0
We are given $16 \cot x=12$. We are asked to find the following
$\frac{\sin x-\cos x}{\sin x+\cos x}$
We know that: $\cot x=\frac{\text { Base }}{\text { Perpendicular }}$
$\Rightarrow$ Base $=3$
$\Rightarrow$ Perpendicular $=4$
$\Rightarrow$ Hypotenuse $=\sqrt{(\text { Perpendicular })^{2}+(\text { Base })^{2}}$
$\Rightarrow$ Hypotenuse $=\sqrt{16+9}$
$\Rightarrow$ Hypotenuse $=5$
Now we have
$16 \cot x=12$
$\cot x=\frac{12}{16}$
$\cot x=\frac{3}{4}$
We know $\sin x=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$ and $\cos x=\frac{\text { Base }}{\text { Hypotenuse }}$
Now we find
$\frac{\sin x-\cos x}{\sin x+\cos x}$
$=\frac{\frac{4}{5}-\frac{3}{5}}{\frac{4}{5}+\frac{3}{5}}$
$=\frac{\frac{1}{5}}{\frac{7}{5}}$
$=\frac{1}{7}$
Hence the correct option is $(a)$