If 1176 = 2a × 3b × 7c, Find a, b, and c.

Question:

If $1176=2^{a} \times 3^{b} \times 7$, Find $a$, $b$, and $c$.

Solution:

Given that 2,3 and 7 are factors of 1176 .

Taking out the LCM of 1176 , we get $2^{3} \times 3^{1} \times 7^{2}=2^{a} \times 3^{b} \times 7^{c}$

By comparing, we get

$a=3, b=1$ and $c=2$

Leave a comment